CAD Forum - tips, tricks, discussion and utilities for AutoCAD, Inventor, Revit and other Autodesk products [www.cadforum.cz] ARKANCE | CONTACT - CZ | SK | EN | DE
Over 1.096.000 registered users (EN+CZ). AutoCAD tips, Inventor tips, Revit tips. Try the new precise Engineering calculator and the updated Barcode generator. New AutoCAD 2026 commands and variables.
RSS channel - CAD tips RSS tips
RSS discussions

Discussion Discussion forum

?
CAD discussions, advices, exchange of experience

CAD Forum - Homepage CAD discussion forum - ask any CAD-related questions here, share your CAD knowledge on AutoCAD, Inventor, Revit and other Autodesk software with your peers from all over the world. To start a new topic, choose an appropriate forum.

Please abide by the rules of this forum.
This is a peer-to-peer forum. The forum doesn't replace the official direct technical support provided by ARKANCE for its customers.
How to post questions: register or login, go to the specific forum and click the NEW TOPIC button.
  FAQ FAQ  Forum Search   Events   Register Register  Login Login

Topic ClosedRobots and Augmented Reality at the Autodesk Applied Research Lab at P

 Post Reply Post Reply
Author
AliveInTheLab View Drop Down
RSS robots
RSS robots


Joined: 20.Nov.2009
Status: Offline
Points: 425
Direct Link To This Post Topic: Robots and Augmented Reality at the Autodesk Applied Research Lab at P
    Posted: 16.Jun.2016 at 04:00

This article is very similar to the one I posted on Thursday of last week.

Evan_demo

The Autodesk Applied Research Lab pursues a broad scope of inquiry — from Advanced Robotics, Internet of Things, and Machine Learning, to Climate Change, and the Future of Work. The team builds real-world prototypes to truly understand how cutting-edge technology will develop in the future, and how these developments will affect the future of Autodesk and the world at large.

Virtual reality is an artificial world consisting of images and sounds created by a computer that is affected by the actions of a person experiencing it. Most first-person video games are examples of virtual reality. Augmented reality is an enhanced version of reality created by the use of technology to overlay digital information on an image of something being viewed through a device such as a camera on a smartphone. What separates augmented reality from virtual reality is the inclusion of the real, physical world in the environment being experienced.

Team member, Senior Research Engineer, Evan Atherton, filed this report based on his recent work with augmented reality.


One of the main goals of Autodesk's Applied Research Lab is to explore new ways of interacting with robots — from the way we plan a robot's motion, to the way we visualize and adapt that motion. Augmented reality is a powerful tool that can fundamentally alter the way we go about the motion-planning process. By using a device like the iPad, or Microsoft HoloLens, we can project digital information about the robot into a physical space.

We are currently exploring augmented reality for three main interactions: visualization, augmentation, and adaptation.

  • VISUALIZATION

    Projecting a digital simulation of a robot's motion in the physical space the robot occupies. Taking the robot off of the computer screen allows the designer to walk around it, get a better sense of its motion in real space, and check for collisions with other objects in that space.

  • AUGMENTATION

    Adding additional information to the physical robot to get a better understanding of the robots behavior. For instance, we can place a meter on each robot joint to visualize how close it is to its joint limits as it moves, or we can overlay a spline to show the intended trajectory for the end effector.

  • ADAPTATION

    Adjusting a parameter in our augmentation to modify the physical robot's path. Dragging the end-effector path spline, for example, could allow the designer to adjust the relative position of the robot's motion without having to return to the original design tool.

Here is a visualization of a virtual robot moving through the actual physical space of the Applied Research Lab. In this case, the colorful printout on the table is actually a marker that is recognized by the software.

Visualization
Click to animate
.

Future versions will be possible without using the marker. The software can be taught to recognize the shapes of things like the robot itself.

Here is that same visualization (which predicted how the robot would move) running alongside the robot actually moving,

Augmentation
Click to animate
.

Technology like this allows people working with robots to see how a robot will behave before the robot performs its actions. This is even possible in the planning stages of a project as this could actually be done even before the project actually gets its robot.

By integrating these capabilities with other design tools like Autodesk Dynamo and Fusion 360, we can dramatically alter the current workflow for robotic path planning, allowing designers, artists, and engineers more control in the creation process.


Thanks, Evan.

Autodesk creates software that allows places, things, and media to be designed, made, and used. Robots are currently integral to the way many things are made. Right now, robots act in isolation. Perhaps with research like this on helping to control robots via augmented reality, robots will work right alongside humans. It won't be a case of "robots took our jobs," but "robots helped us with our jobs" instead.

Virtualization is alive in the lab.

Go to the original post...

It's Alive in ihe Lab - Autodesk Labs blog by Scott Sheppard
Back to Top

Related CAD tips:


 Post Reply Post Reply
  Share Topic   

Forum Jump Forum Permissions View Drop Down



This page was generated in 0,063 seconds.